Exercise 56

Find the derivative of the function. Simplify where possible.

$$
R(t)=\arcsin (1 / t)
$$

Solution

Use the chain rule and the derivatives of the inverse trigonometric functions listed on page 214.

$$
\begin{aligned}
\frac{d R}{d t} & =\frac{d}{d t} \arcsin \left(\frac{1}{t}\right) \\
& =\frac{1}{\sqrt{1-\left(\frac{1}{t}\right)^{2}}} \cdot \frac{d}{d t}\left(\frac{1}{t}\right) \\
& =\frac{1}{\sqrt{1-\frac{1}{t^{2}}}} \cdot\left(-\frac{1}{t^{2}}\right) \\
& =-\frac{1}{t^{2} \sqrt{1-\frac{1}{t^{2}}}} \\
& =-\frac{1}{t \sqrt{t^{2}\left(1-\frac{1}{t^{2}}\right)}} \\
& =-\frac{1}{t \sqrt{t^{2}-1}}
\end{aligned}
$$

